Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Synaptic Array using Fowler-Nordheim Dynamic Analog Memory (2104.05926v1)

Published 13 Apr 2021 in cs.NE, cs.SY, and eess.SY

Abstract: In this paper we present a synaptic array that uses dynamical states to implement an analog memory for energy-efficient training of ML systems. Each of the analog memory elements is a micro-dynamical system that is driven by the physics of Fowler-Nordheim (FN) quantum tunneling, whereas the system level learning modulates the state trajectory of the memory ensembles towards the optimal solution. We show that the extrinsic energy required for modulation can be matched to the dynamics of learning and weight decay leading to a significant reduction in the energy-dissipated during ML training. With the energy-dissipation as low as 5 fJ per memory update and a programming resolution up to 14 bits, the proposed synapse array could be used to address the energy-efficiency imbalance between the training and the inference phases observed in AI systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.