Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

Group Convolutional Neural Networks Improve Quantum State Accuracy (2104.05085v3)

Published 11 Apr 2021 in quant-ph, cond-mat.dis-nn, and cond-mat.str-el

Abstract: Neural networks are a promising tool for simulating quantum many body systems. Recently, it has been shown that neural network-based models describe quantum many body systems more accurately when they are constrained to have the correct symmetry properties. In this paper, we show how to create maximally expressive models for quantum states with specific symmetry properties by drawing on literature from the machine learning community. We implement group equivariant convolutional networks (G-CNN) \cite{cohen2016group}, and demonstrate that performance improvements can be achieved without increasing memory use. We show that G-CNNs achieve very good accuracy for Heisenberg quantum spin models in both ordered and spin liquid regimes, and improve the ground state accuracy on the triangular lattice over other variational Monte-Carlo methods.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.