Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Adaptive, Randomized, Iterative Linear Solvers (2104.04816v2)

Published 10 Apr 2021 in math.NA and cs.NA

Abstract: Deterministic and randomized, row-action and column-action linear solvers have become increasingly popular owing to their simplicity, low computational and memory complexities, and ease of composition with other techniques. Moreover, in order to achieve high-performance, such solvers must often be adapted to the given problem structure and to the hardware platform on which the problem will be solved. Unfortunately, determining whether such adapted solvers will converge to a solution has required equally unique analyses. As a result, adapted, reliable solvers are slow to be developed and deployed. In this work, we provide a general set of assumptions under which such adapted solvers are guaranteed to converge with probability one, and provide worst case rates of convergence. As a result, we can provide practitioners with guidance on how to design highly adapted, randomized or deterministic, row-action or column-action linear solvers that are also guaranteed to converge.

Citations (5)

Summary

We haven't generated a summary for this paper yet.