Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Elementary Representations of Program Invariants over Algebraic Data Types (2104.04463v2)

Published 9 Apr 2021 in cs.PL and cs.FL

Abstract: First-order logic is a natural way of expressing properties of computation. It is traditionally used in various program logics for expressing the correctness properties and certificates. Although such representations are expressive for some theories, they fail to express many interesting properties of algebraic data types (ADTs). In this paper, we explore three different approaches to represent program invariants of ADT-manipulating programs: tree automata, and first-order formulas with or without size constraints. We compare the expressive power of these representations and prove the negative definability of both first-order representations using the pumping lemmas. We present an approach to automatically infer program invariants of ADT-manipulating programs by a reduction to a finite model finder. The implementation called RInGen has been evaluated against state-of-the-art invariant synthesizers and has been experimentally shown to be competitive. In particular, program invariants represented by automata are capable of expressing more complex properties of computation and their automatic construction is often less expensive.

Citations (18)

Summary

We haven't generated a summary for this paper yet.