Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Streaming Self-Training via Domain-Agnostic Unlabeled Images (2104.03309v1)

Published 7 Apr 2021 in cs.CV, cs.AI, and cs.LG

Abstract: We present streaming self-training (SST) that aims to democratize the process of learning visual recognition models such that a non-expert user can define a new task depending on their needs via a few labeled examples and minimal domain knowledge. Key to SST are two crucial observations: (1) domain-agnostic unlabeled images enable us to learn better models with a few labeled examples without any additional knowledge or supervision; and (2) learning is a continuous process and can be done by constructing a schedule of learning updates that iterates between pre-training on novel segments of the streams of unlabeled data, and fine-tuning on the small and fixed labeled dataset. This allows SST to overcome the need for a large number of domain-specific labeled and unlabeled examples, exorbitant computational resources, and domain/task-specific knowledge. In this setting, classical semi-supervised approaches require a large amount of domain-specific labeled and unlabeled examples, immense resources to process data, and expert knowledge of a particular task. Due to these reasons, semi-supervised learning has been restricted to a few places that can house required computational and human resources. In this work, we overcome these challenges and demonstrate our findings for a wide range of visual recognition tasks including fine-grained image classification, surface normal estimation, and semantic segmentation. We also demonstrate our findings for diverse domains including medical, satellite, and agricultural imagery, where there does not exist a large amount of labeled or unlabeled data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.