Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Reordering for Cache-Efficient Near Neighbor Search (2104.03221v1)

Published 7 Apr 2021 in cs.DS

Abstract: Graph search is one of the most successful algorithmic trends in near neighbor search. Several of the most popular and empirically successful algorithms are, at their core, a simple walk along a pruned near neighbor graph. Such algorithms consistently perform at the top of industrial speed benchmarks for applications such as embedding search. However, graph traversal applications often suffer from poor memory access patterns, and near neighbor search is no exception to this rule. Our measurements show that popular search indices such as the hierarchical navigable small-world graph (HNSW) can have poor cache miss performance. To address this problem, we apply graph reordering algorithms to near neighbor graphs. Graph reordering is a memory layout optimization that groups commonly-accessed nodes together in memory. We present exhaustive experiments applying several reordering algorithms to a leading graph-based near neighbor method based on the HNSW index. We find that reordering improves the query time by up to 40%, and we demonstrate that the time needed to reorder the graph is negligible compared to the time required to construct the index.

Citations (10)

Summary

We haven't generated a summary for this paper yet.