Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Algorithms for Differentially Private Stochastic Monotone Variational Inequalities and Saddle-Point Problems (2104.02988v3)

Published 7 Apr 2021 in math.OC, cs.LG, and stat.ML

Abstract: In this work, we conduct the first systematic study of stochastic variational inequality (SVI) and stochastic saddle point (SSP) problems under the constraint of differential privacy (DP). We propose two algorithms: Noisy Stochastic Extragradient (NSEG) and Noisy Inexact Stochastic Proximal Point (NISPP). We show that a stochastic approximation variant of these algorithms attains risk bounds vanishing as a function of the dataset size, with respect to the strong gap function; and a sampling with replacement variant achieves optimal risk bounds with respect to a weak gap function. We also show lower bounds of the same order on weak gap function. Hence, our algorithms are optimal. Key to our analysis is the investigation of algorithmic stability bounds, both of which are new even in the nonprivate case. The dependence of the running time of the sampling with replacement algorithms, with respect to the dataset size $n$, is $n2$ for NSEG and $\tilde{O}(n{3/2})$ for NISPP.

Citations (13)

Summary

We haven't generated a summary for this paper yet.