Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On asymptotic behavior of solutions to cubic nonlinear Klein-Gordon systems in one space dimension (2104.02285v1)

Published 6 Apr 2021 in math.AP

Abstract: In this paper, we consider the large time asymptotic behavior of solutions to systems of two cubic nonlinear Klein-Gordon equations in one space dimension. We classify the systems by studying the quotient set of a suitable subset of systems by the equivalence relation naturally induced by the linear transformation of the unknowns. It is revealed that the equivalence relation is well described by an identification with a matrix. In particular, we characterize some known systems in terms of the matrix and specify all systems equivalent to them. An explicit reduction procedure from a given system in the suitable subset to a model system, i.e., to a representative, is also established. The classification also draws our attention to some model systems which admit solutions with a new kind of asymptotic behavior. Especially, we find new systems which admit a solution of which decay rate is worse than that of a solution to the linear Klein-Gordon equation by logarithmic order.

Summary

We haven't generated a summary for this paper yet.