Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Medical Conversations: Rich Transcription, Confidence Scores & Information Extraction (2104.02219v1)

Published 6 Apr 2021 in cs.LG

Abstract: In this paper, we describe novel components for extracting clinically relevant information from medical conversations which will be available as Google APIs. We describe a transformer-based Recurrent Neural Network Transducer (RNN-T) model tailored for long-form audio, which can produce rich transcriptions including speaker segmentation, speaker role labeling, punctuation and capitalization. On a representative test set, we compare performance of RNN-T models with different encoders, units and streaming constraints. Our transformer-based streaming model performs at about 20% WER on the ASR task, 6% WDER on the diarization task, 43% SER on periods, 52% SER on commas, 43% SER on question marks and 30% SER on capitalization. Our recognizer is paired with a confidence model that utilizes both acoustic and lexical features from the recognizer. The model performs at about 0.37 NCE. Finally, we describe a RNN-T based tagging model. The performance of the model depends on the ontologies, with F-scores of 0.90 for medications, 0.76 for symptoms, 0.75 for conditions, 0.76 for diagnosis, and 0.61 for treatments. While there is still room for improvement, our results suggest that these models are sufficiently accurate for practical applications.

Citations (11)

Summary

We haven't generated a summary for this paper yet.