Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Taggers Fail to Learn, Parsers Need the Most (2104.01083v1)

Published 2 Apr 2021 in cs.CL and cs.AI

Abstract: We present an error analysis of neural UPOS taggers to evaluate why using gold standard tags has such a large positive contribution to parsing performance while using predicted UPOS tags either harms performance or offers a negligible improvement. We evaluate what neural dependency parsers implicitly learn about word types and how this relates to the errors taggers make to explain the minimal impact using predicted tags has on parsers. We also present a short analysis on what contexts result in reductions in tagging performance. We then mask UPOS tags based on errors made by taggers to tease away the contribution of UPOS tags which taggers succeed and fail to classify correctly and the impact of tagging errors.

Citations (2)

Summary

We haven't generated a summary for this paper yet.