Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On rectifiable measures in Carnot groups: representation (2104.00335v1)

Published 1 Apr 2021 in math.MG and math.DG

Abstract: This paper deals with the theory of rectifiability in arbitrary Carnot groups, and in particular with the study of the notion of $\mathscr{P}$-rectifiable measure. First, we show that in arbitrary Carnot groups the natural \textit{infinitesimal} definition of rectifiabile measure, i.e., the definition given in terms of the existence of \textit{flat} tangent measures, is equivalent to the global definition given in terms of coverings with intrinsically differentiable graphs, i.e., graphs with \textit{flat} Hausdorff tangents. In general we do not have the latter equivalence if we ask the covering to be made of intrinsically Lipschitz graphs. Second, we show a geometric area formula for the centered Hausdorff measure restricted to intrinsically differentiable graphs in arbitrary Carnot groups. The latter formula extends and strengthens other area formulae obtained in the literature in the context of Carnot groups. As an application, our analysis allows us to prove the intrinsic $C1$-rectifiability of almost all the preimages of a large class of Lipschitz functions between Carnot groups. In particular, from the latter result, we obtain that any geodesic sphere in a Carnot group equipped with an arbitrary left-invariant homogeneous distance is intrinsic $C1$-rectifiable.

Summary

We haven't generated a summary for this paper yet.