Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CUPID: Adaptive Curation of Pre-training Data for Video-and-Language Representation Learning (2104.00285v2)

Published 1 Apr 2021 in cs.CV

Abstract: This work concerns video-language pre-training and representation learning. In this now ubiquitous training scheme, a model first performs pre-training on paired videos and text (e.g., video clips and accompanied subtitles) from a large uncurated source corpus, before transferring to specific downstream tasks. This two-stage training process inevitably raises questions about the generalization ability of the pre-trained model, which is particularly pronounced when a salient domain gap exists between source and target data (e.g., instructional cooking videos vs. movies). In this paper, we first bring to light the sensitivity of pre-training objectives (contrastive vs. reconstructive) to domain discrepancy. Then, we propose a simple yet effective framework, CUPID, to bridge this domain gap by filtering and adapting source data to the target data, followed by domain-focused pre-training. Comprehensive experiments demonstrate that pre-training on a considerably small subset of domain-focused data can effectively close the source-target domain gap and achieve significant performance gain, compared to random sampling or even exploiting the full pre-training dataset. CUPID yields new state-of-the-art performance across multiple video-language and video tasks, including text-to-video retrieval [72, 37], video question answering [36], and video captioning [72], with consistent performance lift over different pre-training methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Luowei Zhou (31 papers)
  2. Jingjing Liu (139 papers)
  3. Yu Cheng (354 papers)
  4. Zhe Gan (135 papers)
  5. Lei Zhang (1689 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.