Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weak Coloring Numbers of Intersection Graphs (2103.17094v2)

Published 31 Mar 2021 in math.CO, cs.CG, and cs.DM

Abstract: Weak and strong coloring numbers are generalizations of the degeneracy of a graph, where for each natural number $k$, we seek a vertex ordering such every vertex can (weakly respectively strongly) reach in $k$ steps only few vertices with lower index in the ordering. Both notions capture the sparsity of a graph or a graph class, and have interesting applications in the structural and algorithmic graph theory. Recently, the first author together with McCarty and Norin observed a natural volume-based upper bound for the strong coloring numbers of intersection graphs of well-behaved objects in $\mathbb{R}d$, such as homothets of a centrally symmetric compact convex object, or comparable axis-aligned boxes. In this paper, we prove upper and lower bounds for the $k$-th weak coloring numbers of these classes of intersection graphs. As a consequence, we describe a natural graph class whose strong coloring numbers are polynomial in $k$, but the weak coloring numbers are exponential. We also observe a surprising difference in terms of the dependence of the weak coloring numbers on the dimension between touching graphs of balls (single-exponential) and hypercubes (double-exponential).

Citations (6)

Summary

We haven't generated a summary for this paper yet.