Continuum modelling of shear start-up in soft glassy materials (2103.17071v2)
Abstract: Yield stress fluids (YSFs) display a dual nature highlighted by the existence of a yield stress such that YSFs are solid below the yield stress, whereas they flow like liquids above it. Under an applied shear rate $\dot\gamma$, the solid-to-liquid transition is associated with a complex spatiotemporal scenario. Still, the general phenomenology reported in the literature boils down to a simple sequence that can be divided into a short-time response characterized by the so-called "stress overshoot", followed by stress relaxation towards a steady state. Such relaxation can be either long-lasting, which usually involves the growth of a shear band that can be only transient or that may persist at steady-state, or abrupt, in which case the solid-to-liquid transition resembles the failure of a brittle material, involving avalanches. Here we use a continuum model based on a spatially-resolved fluidity approach to rationalize the complete scenario associated with the shear-induced yielding of YSFs. Our model provides a scaling for the coordinates of the stress maximum as a function of $\dot\gamma$, which shows excellent agreement with experimental and numerical data extracted from the literature. Moreover, our approach shows that such a scaling is intimately linked to the growth dynamics of a fluidized boundary layer in the vicinity of the moving boundary. Yet, such scaling is independent of the fate of that layer, and of the long-term behavior of the YSF. Finally, when including the presence of "long-range" correlations, we show that our model displays a ductile to brittle transition, i.e., the stress overshoot reduces into a sharp stress drop associated with avalanches, which impacts the scaling of the stress maximum with $\dot\gamma$. Our work offers a unified picture of shear-induced yielding in YSFs, whose complex spatiotemporal dynamics are deeply connected to non-local effects.