Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Multi-scale Maps from Remote Sensing Images via Series Generative Adversarial Networks (2103.16909v1)

Published 31 Mar 2021 in cs.CV and eess.IV

Abstract: Considering the success of generative adversarial networks (GANs) for image-to-image translation, researchers have attempted to translate remote sensing images (RSIs) to maps (rs2map) through GAN for cartography. However, these studies involved limited scales, which hinders multi-scale map creation. By extending their method, multi-scale RSIs can be trivially translated to multi-scale maps (multi-scale rs2map translation) through scale-wise rs2map models trained for certain scales (parallel strategy). However, this strategy has two theoretical limitations. First, inconsistency between various spatial resolutions of multi-scale RSIs and object generalization on multi-scale maps (RS-m inconsistency) increasingly complicate the extraction of geographical information from RSIs for rs2map models with decreasing scale. Second, as rs2map translation is cross-domain, generators incur high computation costs to transform the RSI pixel distribution to that on maps. Thus, we designed a series strategy of generators for multi-scale rs2map translation to address these limitations. In this strategy, high-resolution RSIs are inputted to an rs2map model to output large-scale maps, which are translated to multi-scale maps through series multi-scale map translation models. The series strategy avoids RS-m inconsistency as inputs are high-resolution large-scale RSIs, and reduces the distribution gap in multi-scale map generation through similar pixel distributions among multi-scale maps. Our experimental results showed better quality multi-scale map generation with the series strategy, as shown by average increases of 11.69%, 53.78%, 55.42%, and 72.34% in the structural similarity index, edge structural similarity index, intersection over union (road), and intersection over union (water) for data from Mexico City and Tokyo at zoom level 17-13.

Citations (4)

Summary

We haven't generated a summary for this paper yet.