Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Expectation-Maximization Algorithm for Continuous-time Hidden Markov Models (2103.16810v2)

Published 31 Mar 2021 in stat.ME

Abstract: We propose a unified framework that extends the inference methods for classical hidden Markov models to continuous settings, where both the hidden states and observations occur in continuous time. Two different settings are analyzed: hidden jump process with a finite state space, and hidden diffusion process with a continuous state space. For each setting, we first estimate the hidden states given the observations and model parameters, showing that the posterior distribution of the hidden states can be described by differential equations in continuous time. We then consider the estimation of unknown model parameters, deriving the continuous-time formulas for the expectation-maximization algorithm. We also propose a Monte Carlo method based on the continuous formulation, sampling the posterior distribution of the hidden states and updating the parameter estimation.

Summary

We haven't generated a summary for this paper yet.