Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Planning in Multi-Agent MDPs (2103.15894v1)

Published 29 Mar 2021 in cs.MA

Abstract: Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in the number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has been exploited to mitigate this complexity is transition independence, in which each agent's transition probabilities are independent of the states and actions of other agents. Transition independence enables factorization of the MMDP and computation of local agent policies but does not hold for arbitrary MMDPs. In this paper, we propose an approximate transition dependence property, called $\delta$-transition dependence and develop a metric for quantifying how far an MMDP deviates from transition independence. Our definition of $\delta$-transition dependence recovers transition independence as a special case when $\delta$ is zero. We develop a polynomial time algorithm in the number of agents that achieves a provable bound on the global optimum when the reward functions are monotone increasing and submodular in the agent actions. We evaluate our approach on two case studies, namely, multi-robot control and multi-agent patrolling example.

Citations (3)

Summary

We haven't generated a summary for this paper yet.