Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GnetDet: Object Detection Optimized on a 224mW CNN Accelerator Chip at the Speed of 106FPS (2103.15756v1)

Published 19 Feb 2021 in cs.AR and cs.CV

Abstract: Object detection is widely used on embedded devices. With the wide availability of CNN (Convolutional Neural Networks) accelerator chips, the object detection applications are expected to run with low power consumption, and high inference speed. In addition, the CPU load is expected to be as low as possible for a CNN accelerator chip working as a co-processor with a host CPU. In this paper, we optimize the object detection model on the CNN accelerator chip by minimizing the CPU load. The resulting model is called GnetDet. The experimental result shows that the GnetDet model running on a 224mW chip achieves the speed of 106FPS with excellent accuracy.

Summary

We haven't generated a summary for this paper yet.