Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Representation Learning by Ranking across multiple tasks (2103.15093v2)

Published 28 Mar 2021 in cs.LG

Abstract: In recent years, representation learning has become the research focus of the machine learning community. Large-scale neural networks are a crucial step toward achieving general intelligence, with their success largely attributed to their ability to learn abstract representations of data. Several learning fields are actively discussing how to learn representations, yet there is a lack of a unified perspective. We convert the representation learning problem under different tasks into a ranking problem. By adopting the ranking problem as a unified perspective, representation learning tasks can be solved in a unified manner by optimizing the ranking loss. Experiments under various learning tasks, such as classification, retrieval, multi-label learning, and regression, prove the superiority of the representation learning by ranking framework. Furthermore, experiments under self-supervised learning tasks demonstrate the significant advantage of the ranking framework in processing unsupervised training data, with data augmentation techniques further enhancing its performance.

Summary

We haven't generated a summary for this paper yet.