Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Negations of Probability Distributions (2103.14986v1)

Published 27 Mar 2021 in cs.AI

Abstract: Recently it was introduced a negation of a probability distribution. The need for such negation arises when a knowledge-based system can use the terms like NOT HIGH, where HIGH is represented by a probability distribution (pd). For example, HIGH PROFIT or HIGH PRICE can be considered. The application of this negation in Dempster-Shafer theory was considered in many works. Although several negations of probability distributions have been proposed, it was not clear how to construct other negations. In this paper, we consider negations of probability distributions as point-by-point transformations of pd using decreasing functions defined on [0,1] called negators. We propose the general method of generation of negators and corresponding negations of pd, and study their properties. We give a characterization of linear negators as a convex combination of Yager and uniform negators.

Citations (10)

Summary

We haven't generated a summary for this paper yet.