Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Label Classification Neural Networks with Hard Logical Constraints (2103.13427v1)

Published 24 Mar 2021 in cs.LG and cs.AI

Abstract: Multi-label classification (MC) is a standard machine learning problem in which a data point can be associated with a set of classes. A more challenging scenario is given by hierarchical multi-label classification (HMC) problems, in which every prediction must satisfy a given set of hard constraints expressing subclass relationships between classes. In this paper, we propose C-HMCNN(h), a novel approach for solving HMC problems, which, given a network h for the underlying MC problem, exploits the hierarchy information in order to produce predictions coherent with the constraints and to improve performance. Furthermore, we extend the logic used to express HMC constraints in order to be able to specify more complex relations among the classes and propose a new model CCN(h), which extends C-HMCNN(h) and is again able to satisfy and exploit the constraints to improve performance. We conduct an extensive experimental analysis showing the superior performance of both C-HMCNN(h) and CCN(h) when compared to state-of-the-art models in both the HMC and the general MC setting with hard logical constraints.

Citations (37)

Summary

We haven't generated a summary for this paper yet.