Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Converse Lyapunov Functions and Converging Inner Approximations to Maximal Regions of Attraction of Nonlinear Systems (2103.12825v4)

Published 23 Mar 2021 in math.OC and math.DS

Abstract: This paper considers the problem of approximating the "maximal" region of attraction (the set that contains all asymptotically stable sets) of any given set of locally exponentially stable nonlinear Ordinary Differential Equations (ODEs) with a sufficiently smooth vector field. Given a locally exponential stable ODE with a differentiable vector field, we show that there exists a globally Lipschitz continuous converse Lyapunov function whose 1-sublevel set is equal to the maximal region of attraction of the ODE. We then propose a sequence of d-degree Sum-of-Squares (SOS) programming problems that yields a sequence of polynomials that converges to our proposed converse Lyapunov function uniformly from above in the L1 norm. We show that each member of the sequence of 1-sublevel sets of the polynomial solutions to our proposed sequence of SOS programming problems are certifiably contained inside the maximal region of attraction of the ODE, and moreover, we show that this sequence of sublevel sets converges to the maximal region of attraction of the ODE with respect to the volume metric. We provide numerical examples of estimations of the maximal region of attraction for the Van der Pol oscillator and a three dimensional servomechanism.

Summary

We haven't generated a summary for this paper yet.