Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maps preserving trace of products of matrices (2103.12552v2)

Published 22 Mar 2021 in math.FA, math.GR, math.OA, and quant-ph

Abstract: We prove the linearity and injectivity of two maps $\phi_1$ and $\phi_2$ on certain subsets of $M_n$ that satisfy $\operatorname{tr}(\phi_1(A)\phi_2(B))=\operatorname{tr}(AB)$. We apply it to characterize maps $\phi_i:\mathcal{S}\to \mathcal{S}$ ($i=1, \ldots, m$) satisfying $$\operatorname{tr} (\phi_1(A_1)\cdots \phi_m(A_m))=\operatorname{tr} (A_1\cdots A_m)$$ in which $\mathcal{S}$ is the set of $n$-by-$n$ general, Hermitian, or symmetric matrices for $m\ge 3$, or positive definite or diagonal matrices for $m\ge 2$. The real versions are also given.

Summary

We haven't generated a summary for this paper yet.