Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Training with Bounding Map for Universal Lesion Detection (2103.12277v1)

Published 23 Mar 2021 in cs.CV and cs.AI

Abstract: Universal Lesion Detection (ULD) in computed tomography plays an essential role in computer-aided diagnosis. Promising ULD results have been reported by coarse-to-fine two-stage detection approaches, but such two-stage ULD methods still suffer from issues like imbalance of positive v.s. negative anchors during object proposal and insufficient supervision problem during localization regression and classification of the region of interest (RoI) proposals. While leveraging pseudo segmentation masks such as bounding map (BM) can reduce the above issues to some degree, it is still an open problem to effectively handle the diverse lesion shapes and sizes in ULD. In this paper, we propose a BM-based conditional training for two-stage ULD, which can (i) reduce positive vs. negative anchor imbalance via BM-based conditioning (BMC) mechanism for anchor sampling instead of traditional IoU-based rule; and (ii) adaptively compute size-adaptive BM (ABM) from lesion bounding box, which is used for improving lesion localization accuracy via ABMsupervised segmentation. Experiments with four state-of-the-art methods show that the proposed approach can bring an almost free detection accuracy improvement without requiring expensive lesion mask annotations.

Citations (8)

Summary

We haven't generated a summary for this paper yet.