Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An efficient algorithm to compute the exponential of skew-Hermitian matrices for the time integration of the Schrödinger equation (2103.10132v2)

Published 18 Mar 2021 in math.NA and cs.NA

Abstract: We present a practical algorithm to approximate the exponential of skew-Hermitian matrices up to round-off error based on an efficient computation of Chebyshev polynomials of matrices and the corresponding error analysis. It is based on Chebyshev polynomials of degrees 2, 4, 8, 12 and 18 which are computed with only 1, 2, 3, 4 and 5 matrix-matrix products, respectively. For problems of the form $\exp(-iA)$, with $A$ a real and symmetric matrix, an improved version is presented that computes the sine and cosine of $A$ with a reduced computational cost. The theoretical analysis, supported by numerical experiments, indicates that the new methods are more efficient than schemes based on rational Pad\'e approximants and Taylor polynomials for all tolerances and time interval lengths. The new procedure is particularly recommended to be used in conjunction with exponential integrators for the numerical time integration of the Schr\"odinger equation.

Citations (8)

Summary

We haven't generated a summary for this paper yet.