Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Classical Search Game in Discrete Locations

Published 8 Mar 2021 in stat.ML, cs.GT, cs.LG, and math.OC | (2103.09310v1)

Abstract: Consider a two-person zero-sum search game between a hider and a searcher. The hider hides among $n$ discrete locations, and the searcher successively visits individual locations until finding the hider. Known to both players, a search at location $i$ takes $t_i$ time units and detects the hider -- if hidden there -- independently with probability $q_i$, for $i=1,\ldots,n$. The hider aims to maximize the expected time until detection, while the searcher aims to minimize it. We prove the existence of an optimal strategy for each player. In particular, the hider's optimal mixed strategy hides in each location with a nonzero probability, and the searcher's optimal mixed strategy can be constructed with up to $n$ simple search sequences. We develop an algorithm to compute an optimal strategy for each player, and compare the optimal hiding strategy with the simple hiding strategy which gives the searcher no location preference at the beginning of the search.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.