Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intersection patterns in spaces with a forbidden homological minor (2103.09286v3)

Published 16 Mar 2021 in cs.CG and math.CO

Abstract: In this paper we study generalizations of classical results on intersection patterns of set systems in $\mathbb{R}d$, such as the fractional Helly theorem or the $(p,q)$-theorem, in the setting of arbitrary triangulable spaces with a forbidden homological minor. Given a simplicial complex $K$ and an integer $b$, we say that a family $\mathcal{F}$ of subcomplexes of some simplicial complex $\mathcal{U}$ is a \emph{$(K,b)$-free cover} if (i) $K$ is a forbidden homological minor of $\mathcal{U}$, and (ii) the $j$th reduced Betti number $\tilde{\beta}j(\bigcap{S\in {\mathcal{G}}}S,\mathbb{Z}_2)$ is strictly less than $b$ for all $0\leq j < \dim K$ and all nonempty subfamilies $\mathcal{G}\subseteq \mathcal{F}$. We show that for every $K$ and $b$, the fractional Helly number of a $(K,b)$-free cover is at most $\mu(K)+1$, where $\mu(K)$ is the maximum sum of the dimensions of two disjoint faces in~$K$. This implies that the assertion of the $(p,q)$-theorem holds for every $p \ge q > \mu(K)$ and every $(K,b)$-free cover $\mathcal{F}$. For $b=1$ and a suitable $K$ this recovers the original $(p,q)$-theorem and its generalization to good covers. Interestingly, our results show that that the range of parameters $(p,q)$ for which the $(p,q)$-theorem holds is independent of $b$. Our proofs use Ramsey-type arguments combined with the notion of stair convexity of Bukh et al. to construct (forbidden) homological minors in cubical complexes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. N. Alon and G. Kalai. A simple proof of the upper bound theorem. Eur. J. Comb. 6, 211–214 (1985).
  2. Transversal numbers for hypergraphs arising in geometry. Adv. in Appl. Math. 29, 79 – 101 (2002).
  3. N. Alon, D. J. Kleitman Piercing convex sets and the Hadwiger–Debrunner (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-problem. Adv. Math. 96, 103–112 (1992).
  4. N. Amenta. Helly theorems and generalized linear programming. Discrete Comput. Geom. 12, 241—261 (1994).
  5. I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math. 40, 141–152 (1982).
  6. I. Bárány. Combinatorial Convexity. AMS University Lecture Series (2021)
  7. I. Bárány and J. Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math. 174, 227–235 (2003).
  8. Lower bounds for weak epsilon-nets and stair-convexity. Israel J. Math. 182, 199–208 (2011).
  9. Helly-type theorems in property testing. Int. J. Comput. Geom. Appl. 28, 365–379 (2018).
  10. Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.
  11. Debrunner, H. E.: Helly type theorems derived from basic singular homology. Amer. Math. Monthly 77, 375–380 (1970). https://doi.org/10.2307/2316144
  12. The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Am. Math. Soc. 56, 415–511 (2019).
  13. Helly numbers of acyclic families. Adv. Math. 253, 163–193 (2014).
  14. J. P. Doignon. Convexity in crystallographical lattices. J. Geom. 3, 71–85 (1973).
  15. J. Eckhoff. An upper-bound theorem for families of convex sets. Geom. Dedicata 19, 217–227 (1985).
  16. J. Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of convex geometry, Vol. A, B, pages 389–448. North-Holland, Amsterdam, 1993.
  17. P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica 3, 181–192 (1983). URL: https://doi.org/10.1007/BF02579292, doi:10.1007/BF02579292.
  18. Bounding Helly numbers via Betti numbers. In A journey through discrete mathematics, pages 407–447. Springer, Cham, 2017.
  19. Ramsey theory, volume 20. John Wiley & Sons, 1990.
  20. S. Hell. Tverberg-type theorems and the fractional Helly property. PhD thesis, 2006.
  21. Helly, E.: Über systeme von abgeschlossenen mengen mit gemeinschaftlichen punkten. Monatsh. f. Mathematik und Physik 37, 281–302 (1930)
  22. A. F. Holmsen and D. Lee. Radon numbers and the fractional Helly theorem. Isr. J. Math. 24, 433–447 (2021).
  23. Nerves, minors, and piercing numbers. Trans. Am. Math. Soc. 371, 8755–8779 (2019).
  24. Computational homology, volume 157. Springer Science & Business Media, 2006.
  25. G. Kalai. Intersection patterns of convex sets. Isr. J. Math. 48, 161–174 (1984).
  26. G. Kalai. Combinatorial expectations from commutative algebra. In I. Peeva and V. Welker, editors, Combinatorial Commutative Algebra, volume 1(3), pages 1729–1734. Oberwolfach Reports, 2004.
  27. G. Kalai. Problems for Imre Bárány’s birthday. https://gilkalai.wordpress.com/2017/05/23/problems-for-imre-baranys-birthday/, 2017.
  28. G. Kalai and R. Meshulam. A topological colorful Helly theorem. Adv. Math. 191, 305–311 (2005).
  29. G. Kalai and R. Meshulam. Leray numbers of projections and a topological Helly-type theorem. J. Topol. 1, 551–556 (2008).
  30. G. Kalai, Z. Patáková. Intersection patterns of planar sets. Discrete Comput. Geom. 64, 304–323 (2020).
  31. M. Katchalski and A. Liu. A problem of geometry in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Am. Math. Soc. 75, 284–288 (1979).
  32. J. Matoušek. A Helly-type theorem for unions of convex sets. Discrete Comput. Geom. 18, 1–12 (1997).
  33. J. Matoušek. Lectures on discrete geometry, volume 212. Springer Science & Business Media, 2013.
  34. B. Mohar. What is ……\dots… a graph minor. Notices Am. Math. Soc. 53, 338–339 (2006).
  35. Z. Patáková. Bounding Radon Numbers via Betti Numbers. International Mathematics Research Notices, 2024 https://doi.org/10.1093/imrn/rnae056
  36. H. E. Scarf. An observation on the structure of production sets with indivisibilities. Proc. Nat. Acad. Sci. U.S.A. 74, 3637–3641 (1977).
  37. U. Wagner. Minors, embeddability, and extremal problems for hypergraphs. In Thirty essays on geometric graphs theory, pages 569–607, Springer, 2013.
  38. G. Wegner. d-collapsing and nerves of families of convex sets. Arch. Math. 26, 317–321 (1975).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com