Intersection patterns in spaces with a forbidden homological minor (2103.09286v3)
Abstract: In this paper we study generalizations of classical results on intersection patterns of set systems in $\mathbb{R}d$, such as the fractional Helly theorem or the $(p,q)$-theorem, in the setting of arbitrary triangulable spaces with a forbidden homological minor. Given a simplicial complex $K$ and an integer $b$, we say that a family $\mathcal{F}$ of subcomplexes of some simplicial complex $\mathcal{U}$ is a \emph{$(K,b)$-free cover} if (i) $K$ is a forbidden homological minor of $\mathcal{U}$, and (ii) the $j$th reduced Betti number $\tilde{\beta}j(\bigcap{S\in {\mathcal{G}}}S,\mathbb{Z}_2)$ is strictly less than $b$ for all $0\leq j < \dim K$ and all nonempty subfamilies $\mathcal{G}\subseteq \mathcal{F}$. We show that for every $K$ and $b$, the fractional Helly number of a $(K,b)$-free cover is at most $\mu(K)+1$, where $\mu(K)$ is the maximum sum of the dimensions of two disjoint faces in~$K$. This implies that the assertion of the $(p,q)$-theorem holds for every $p \ge q > \mu(K)$ and every $(K,b)$-free cover $\mathcal{F}$. For $b=1$ and a suitable $K$ this recovers the original $(p,q)$-theorem and its generalization to good covers. Interestingly, our results show that that the range of parameters $(p,q)$ for which the $(p,q)$-theorem holds is independent of $b$. Our proofs use Ramsey-type arguments combined with the notion of stair convexity of Bukh et al. to construct (forbidden) homological minors in cubical complexes.
- N. Alon and G. Kalai. A simple proof of the upper bound theorem. Eur. J. Comb. 6, 211–214 (1985).
- Transversal numbers for hypergraphs arising in geometry. Adv. in Appl. Math. 29, 79 – 101 (2002).
- N. Alon, D. J. Kleitman Piercing convex sets and the Hadwiger–Debrunner (p,q)𝑝𝑞(p,q)( italic_p , italic_q )-problem. Adv. Math. 96, 103–112 (1992).
- N. Amenta. Helly theorems and generalized linear programming. Discrete Comput. Geom. 12, 241—261 (1994).
- I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math. 40, 141–152 (1982).
- I. Bárány. Combinatorial Convexity. AMS University Lecture Series (2021)
- I. Bárány and J. Matoušek. A fractional Helly theorem for convex lattice sets. Adv. Math. 174, 227–235 (2003).
- Lower bounds for weak epsilon-nets and stair-convexity. Israel J. Math. 182, 199–208 (2011).
- Helly-type theorems in property testing. Int. J. Comput. Geom. Appl. 28, 365–379 (2018).
- Helly’s theorem and its relatives. In Proc. Sympos. Pure Math., Vol. VII, pages 101–180. Amer. Math. Soc., Providence, R.I., 1963.
- Debrunner, H. E.: Helly type theorems derived from basic singular homology. Amer. Math. Monthly 77, 375–380 (1970). https://doi.org/10.2307/2316144
- The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bull. Am. Math. Soc. 56, 415–511 (2019).
- Helly numbers of acyclic families. Adv. Math. 253, 163–193 (2014).
- J. P. Doignon. Convexity in crystallographical lattices. J. Geom. 3, 71–85 (1973).
- J. Eckhoff. An upper-bound theorem for families of convex sets. Geom. Dedicata 19, 217–227 (1985).
- J. Eckhoff. Helly, Radon, and Carathéodory type theorems. In Handbook of convex geometry, Vol. A, B, pages 389–448. North-Holland, Amsterdam, 1993.
- P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica 3, 181–192 (1983). URL: https://doi.org/10.1007/BF02579292, doi:10.1007/BF02579292.
- Bounding Helly numbers via Betti numbers. In A journey through discrete mathematics, pages 407–447. Springer, Cham, 2017.
- Ramsey theory, volume 20. John Wiley & Sons, 1990.
- S. Hell. Tverberg-type theorems and the fractional Helly property. PhD thesis, 2006.
- Helly, E.: Über systeme von abgeschlossenen mengen mit gemeinschaftlichen punkten. Monatsh. f. Mathematik und Physik 37, 281–302 (1930)
- A. F. Holmsen and D. Lee. Radon numbers and the fractional Helly theorem. Isr. J. Math. 24, 433–447 (2021).
- Nerves, minors, and piercing numbers. Trans. Am. Math. Soc. 371, 8755–8779 (2019).
- Computational homology, volume 157. Springer Science & Business Media, 2006.
- G. Kalai. Intersection patterns of convex sets. Isr. J. Math. 48, 161–174 (1984).
- G. Kalai. Combinatorial expectations from commutative algebra. In I. Peeva and V. Welker, editors, Combinatorial Commutative Algebra, volume 1(3), pages 1729–1734. Oberwolfach Reports, 2004.
- G. Kalai. Problems for Imre Bárány’s birthday. https://gilkalai.wordpress.com/2017/05/23/problems-for-imre-baranys-birthday/, 2017.
- G. Kalai and R. Meshulam. A topological colorful Helly theorem. Adv. Math. 191, 305–311 (2005).
- G. Kalai and R. Meshulam. Leray numbers of projections and a topological Helly-type theorem. J. Topol. 1, 551–556 (2008).
- G. Kalai, Z. Patáková. Intersection patterns of planar sets. Discrete Comput. Geom. 64, 304–323 (2020).
- M. Katchalski and A. Liu. A problem of geometry in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Proc. Am. Math. Soc. 75, 284–288 (1979).
- J. Matoušek. A Helly-type theorem for unions of convex sets. Discrete Comput. Geom. 18, 1–12 (1997).
- J. Matoušek. Lectures on discrete geometry, volume 212. Springer Science & Business Media, 2013.
- B. Mohar. What is ……\dots… a graph minor. Notices Am. Math. Soc. 53, 338–339 (2006).
- Z. Patáková. Bounding Radon Numbers via Betti Numbers. International Mathematics Research Notices, 2024 https://doi.org/10.1093/imrn/rnae056
- H. E. Scarf. An observation on the structure of production sets with indivisibilities. Proc. Nat. Acad. Sci. U.S.A. 74, 3637–3641 (1977).
- U. Wagner. Minors, embeddability, and extremal problems for hypergraphs. In Thirty essays on geometric graphs theory, pages 569–607, Springer, 2013.
- G. Wegner. d-collapsing and nerves of families of convex sets. Arch. Math. 26, 317–321 (1975).