Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

On linear combinations of cohomological invariants of compact complex manifolds (2103.08419v2)

Published 15 Mar 2021 in math.AG and math.GT

Abstract: We prove that there are no unexpected universal integral linear relations and congruences between Hodge, Betti and Chern numbers of compact complex manifolds and determine the linear combinations of such numbers which are bimeromorphic or topological invariants. This extends results in the K\"ahler case by Kotschick and Schreieder. We then develop a framework to tackle the more general questions taking into account `all' cohomological invariants (e.g. the dimensions of the higher pages of the Fr\"olicher spectral sequence, Bott-Chern and Aeppli cohomology). This allows us to reduce the general questions to specific construction problems. We solve these problems in many cases. In particular, we obtain full answers to the general questions concerning universal relations and bimeromorphic invariants in low dimensions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube