Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results and Construction (2103.08280v5)

Published 15 Mar 2021 in math.OC, cs.LG, and stat.ML

Abstract: In this paper, we study the lower complexity bounds for finite-sum optimization problems, where the objective is the average of $n$ individual component functions. We consider Proximal Incremental First-order (PIFO) algorithms which have access to the gradient and proximal oracles for each component function. To incorporate loopless methods, we also allow PIFO algorithms to obtain the full gradient infrequently. We develop a novel approach to constructing the hard instances, which partitions the tridiagonal matrix of classical examples into $n$ groups. This construction is friendly to the analysis of PIFO algorithms. Based on this construction, we establish the lower complexity bounds for finite-sum minimax optimization problems when the objective is convex-concave or nonconvex-strongly-concave and the class of component functions is $L$-average smooth. Most of these bounds are nearly matched by existing upper bounds up to log factors. We can also derive similar lower bounds for finite-sum minimization problems as previous work under both smoothness and average smoothness assumptions. Our lower bounds imply that proximal oracles for smooth functions are not much more powerful than gradient oracles.

Citations (33)

Summary

We haven't generated a summary for this paper yet.