Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short minimal codes and covering codes via strong blocking sets in projective spaces (2103.07393v2)

Published 12 Mar 2021 in math.CO, cs.IT, and math.IT

Abstract: Minimal linear codes are in one-to-one correspondence with special types of blocking sets of projective spaces over a finite field, which are called strong or cutting blocking sets. In this paper we prove an upper bound on the minimal length of minimal codes of dimension $k$ over the $q$-element Galois field which is linear in both $q$ and $k$, hence improve the previous superlinear bounds. This result determines the minimal length up to a small constant factor. We also improve the lower and upper bounds on the size of so called higgledy-piggledy line sets in projective spaces and apply these results to present improved bounds on the size of covering codes and saturating sets in projective spaces as well. The contributions rely on geometric and probabilistic arguments.

Citations (26)

Summary

We haven't generated a summary for this paper yet.