Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Upward Planar Drawings with Three and More Slopes (2103.06801v3)

Published 11 Mar 2021 in cs.CG

Abstract: The slope number of a graph $G$ is the smallest number of slopes needed for the segments representing the edges in any straight-line drawing of $G$. It serves as a measure of the visual complexity of a graph drawing. Several bounds on the slope number for particular graph classes have been established, both in the planar and the non-planar setting. Moreover, the slope number can also be defined for directed graphs and upward planar drawings. We study upward planar straight-line drawings that use only a constant number of slopes. In particular, for a fixed number $k$ of slopes, we are interested in whether a given directed graph $G$ with maximum in- and outdegree at most $k$ admits an upward planar $k$-slope drawing. We investigate this question both in the fixed and the variable embedding scenario. We show that this problem is in general NP-hard to decide for outerplanar graphs ($k = 3$) and planar graphs ($k \ge 3$). On the positive side, we can decide whether a given cactus graph admits an upward planar $k$-slope drawing and, in the affirmative, construct such a drawing in FPT time with parameter $k$. Furthermore, we can determine the minimum number of slopes required for a given tree in linear time and compute the corresponding drawing efficiently.

Citations (3)

Summary

We haven't generated a summary for this paper yet.