Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intraclass clustering: an implicit learning ability that regularizes DNNs (2103.06733v1)

Published 11 Mar 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Several works have shown that the regularization mechanisms underlying deep neural networks' generalization performances are still poorly understood. In this paper, we hypothesize that deep neural networks are regularized through their ability to extract meaningful clusters among the samples of a class. This constitutes an implicit form of regularization, as no explicit training mechanisms or supervision target such behaviour. To support our hypothesis, we design four different measures of intraclass clustering, based on the neuron- and layer-level representations of the training data. We then show that these measures constitute accurate predictors of generalization performance across variations of a large set of hyperparameters (learning rate, batch size, optimizer, weight decay, dropout rate, data augmentation, network depth and width).

Citations (8)

Summary

We haven't generated a summary for this paper yet.