Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

3D Head-Position Prediction in First-Person View by Considering Head Pose for Human-Robot Eye Contact (2103.06417v2)

Published 11 Mar 2021 in cs.AI, cs.CV, and cs.RO

Abstract: For a humanoid robot to make eye contact and initiate communication with a person, it is necessary to estimate the person's head position. However, eye contact becomes difficult due to the mechanical delay of the robot when the person is moving. Owing to these issues, it is important to conduct a head-position prediction to mitigate the effect of the delay in the robot motion. Based on the fact that humans turn their heads before changing direction while walking, we hypothesized that the accuracy of three-dimensional (3D) head-position prediction from a first-person view can be improved by considering the head pose. We compared our method with a conventional Kalman filter-based approach, and found our method to be more accurate. The experiment results show that considering the head pose helps improve the accuracy of 3D head-position prediction.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.