Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Information-Theoretic Perspective on Credit Assignment in Reinforcement Learning (2103.06224v1)

Published 10 Mar 2021 in cs.LG, cs.IT, and math.IT

Abstract: How do we formalize the challenge of credit assignment in reinforcement learning? Common intuition would draw attention to reward sparsity as a key contributor to difficult credit assignment and traditional heuristics would look to temporal recency for the solution, calling upon the classic eligibility trace. We posit that it is not the sparsity of the reward itself that causes difficulty in credit assignment, but rather the \emph{information sparsity}. We propose to use information theory to define this notion, which we then use to characterize when credit assignment is an obstacle to efficient learning. With this perspective, we outline several information-theoretic mechanisms for measuring credit under a fixed behavior policy, highlighting the potential of information theory as a key tool towards provably-efficient credit assignment.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com