Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Approximation of Residual Flows in Maximum Mean Discrepancy (2103.05793v2)

Published 10 Mar 2021 in cs.LG and stat.ML

Abstract: Normalizing flows are a class of flexible deep generative models that offer easy likelihood computation. Despite their empirical success, there is little theoretical understanding of their expressiveness. In this work, we study residual flows, a class of normalizing flows composed of Lipschitz residual blocks. We prove residual flows are universal approximators in maximum mean discrepancy. We provide upper bounds on the number of residual blocks to achieve approximation under different assumptions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.