Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Repairing Serializability Bugs in Distributed Database Programs via Automated Schema Refactoring (2103.05573v1)

Published 9 Mar 2021 in cs.PL

Abstract: Serializability is a well-understood concurrency control mechanism that eases reasoning about highly-concurrent database programs. Unfortunately, enforcing serializability has a high-performance cost, especially on geographically distributed database clusters. Consequently, many databases allow programmers to choose when a transaction must be executed under serializability, with the expectation that transactions would only be so marked when necessary to avoid serious concurrency bugs. However, this is a significant burden to impose on developers, requiring them to (a) reason about subtle concurrent interactions among potentially interfering transactions, (b) determine when such interactions would violate desired invariants, and (c) then identify the minimum number of transactions whose executions should be serialized to prevent these violations. To mitigate this burden, in this paper we present a sound and fully automated schema refactoring procedure that transforms a program's data layout -- rather than its concurrency control logic -- to eliminate statically identified concurrency bugs, allowing more transactions to be safely executed under weaker and more performant database guarantees. Experimental results over a range of database benchmarks indicate that our approach is highly effective in eliminating concurrency bugs, with safe refactored programs showing an average of 120% higher throughput and 45% lower latency compared to the baselines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.