Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing sensor resolution improves CNN accuracy given the same number of parameters or FLOPS (2103.05251v1)

Published 9 Mar 2021 in cs.CV and cs.LG

Abstract: High image resolution is critical to obtain a good performance in many computer vision applications. Computational complexity of CNNs, however, grows significantly with the increase in input image size. Here, we show that it is almost always possible to modify a network such that it achieves higher accuracy at a higher input resolution while having the same number of parameters or/and FLOPS. The idea is similar to the EfficientNet paper but instead of optimizing network width, depth and resolution simultaneously, here we focus only on input resolution. This makes the search space much smaller which is more suitable for low computational budget regimes. More importantly, by controlling for the number of model parameters (and hence model capacity), we show that the additional benefit in accuracy is indeed due to the higher input resolution. Preliminary empirical investigation over MNIST, Fashion MNIST, and CIFAR10 datasets demonstrates the efficiency of the proposed approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.