Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Predictive Control of a Vehicle using Koopman Operator (2103.04978v1)

Published 8 Mar 2021 in math.OC, cs.SY, and eess.SY

Abstract: This paper continues in the work from arXiv:1903.06103 [math.OC] where a nonlinear vehicle model was approximated in a purely data-driven manner by a linear predictor of higher order, namely the Koopman operator. The vehicle system typically features a lot of nonlinearities such as rigid-body dynamics, coordinate system transformations and most importantly the tire. These nonlinearities are approximated in a predefined subset of the state-space by the linear Koopman operator and used for a linear Model Predictive Control (MPC) design in the high-dimension state space where the nonlinear system dynamics evolve linearly. The result is a nonlinear MPC designed by linear methodologies. It is demonstrated that the Koopman-based controller is able to recover from a very unusual state of the vehicle where all the aforementioned nonlinearities are dominant. The controller is compared with a controller based on a classic local linearization and shortcomings of this approach are discussed.

Citations (24)

Summary

We haven't generated a summary for this paper yet.