Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems (2103.04903v3)

Published 8 Mar 2021 in math.NA and cs.NA

Abstract: We introduce a new structure preserving, second order in time relaxation-type scheme for approximating solutions of the Schr\"odinger-Poisson system. More specifically, we use the Crank-Nicolson scheme as a time stepping mechanism, whilst the nonlinearity is handled by means of a relaxation approach in the spirit of \cite{Besse, KK} for the nonlinear Schr\"odinger equation. For the spatial discretisation we use the standard conforming finite element scheme. The resulting scheme is explicit with respect to the nonlinearity, i.e. it requires the solution of a linear system for each time-step, and satisfies discrete versions of the system's mass conservation and energy balance laws for constant meshes. The scheme is seen to be second order in time. We conclude by presenting some numerical experiments, including an example from cosmology and an example with variable time-steps which demonstrate the effectiveness and robustness of the new scheme.

Citations (3)

Summary

We haven't generated a summary for this paper yet.