Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical comparison between autoencoders and traditional dimensionality reduction methods (2103.04874v1)

Published 8 Mar 2021 in cs.LG

Abstract: In order to process efficiently ever-higher dimensional data such as images, sentences, or audio recordings, one needs to find a proper way to reduce the dimensionality of such data. In this regard, SVD-based methods including PCA and Isomap have been extensively used. Recently, a neural network alternative called autoencoder has been proposed and is often preferred for its higher flexibility. This work aims to show that PCA is still a relevant technique for dimensionality reduction in the context of classification. To this purpose, we evaluated the performance of PCA compared to Isomap, a deep autoencoder, and a variational autoencoder. Experiments were conducted on three commonly used image datasets: MNIST, Fashion-MNIST, and CIFAR-10. The four different dimensionality reduction techniques were separately employed on each dataset to project data into a low-dimensional space. Then a k-NN classifier was trained on each projection with a cross-validated random search over the number of neighbours. Interestingly, our experiments revealed that k-NN achieved comparable accuracy on PCA and both autoencoders' projections provided a big enough dimension. However, PCA computation time was two orders of magnitude faster than its neural network counterparts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Quentin Fournier (14 papers)
  2. Daniel Aloise (11 papers)
Citations (44)

Summary

We haven't generated a summary for this paper yet.