Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

An Ultra-low Power RNN Classifier for Always-On Voice Wake-Up Detection Robust to Real-World Scenarios (2103.04792v1)

Published 8 Mar 2021 in eess.AS and cs.SD

Abstract: We present in this paper an ultra-low power (ULP) Recurrent Neural Network (RNN) based classifier for an always-on voice Wake-Up Sensor (WUS) with performances suitable for real-world applications. The purpose of our sensor is to bring down by at least a factor 100 the power consumption in background noise of always-on speech processing algorithms such as Automatic Speech Recognition, Keyword Spotting, Speaker Verification, etc. Unlike the other published approaches, we designed our wake-up sensor to be robust to unseen real-world noises for realistic levels of speech and noise by carefully designing the dataset and the loss function. We also specifically trained it to mark only the speech start rather than adopting a traditional Voice Activity Detection (VAD) approach. We achieve less than 3% No Trigger Rate (NTR) for a duty cycle less than 1% in challenging background noises pooled using a model of an analogue front-end. We demonstrate the superiority of RNNs on this task compared to the other tested approaches, with an estimated power consumption of 45 nW for the RNN itself in 65nm CMOS and a minimal memory footprint of 0.52 kB.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.