Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The gradient descent method for the convexification to solve boundary value problems of quasi-linear PDEs and a coefficient inverse problem (2103.04159v3)

Published 6 Mar 2021 in math.NA, cs.NA, and math.AP

Abstract: We study the global convergence of the gradient descent method of the minimization of strictly convex functionals on an open and bounded set of a Hilbert space. Such results are unknown for this type of sets, unlike the case of the entire Hilbert space. Then, we use our result to establish a general framework to numerically solve boundary value problems for quasi-linear partial differential equations (PDEs) with noisy Cauchy data. The procedure involves the use of Carleman weight functions to convexify a cost functional arising from the given boundary value problem and thus to ensure the convergence of the gradient descent method above. We prove the global convergence of the method as the noise tends to 0. The convergence rate is Lipschitz. Next, we apply this method to solve a highly nonlinear and severely ill-posed coefficient inverse problem, which is the so-called back scattering inverse problem. This problem has many real-world applications. Numerical examples are presented.

Citations (28)

Summary

We haven't generated a summary for this paper yet.