Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse design of Raman amplifier in frequency and distance domain using Convolutional Neural Networks (2103.03837v1)

Published 21 Feb 2021 in eess.SP, eess.IV, physics.app-ph, and physics.optics

Abstract: We present a Convolutional Neural Network (CNN) architecture for inverse Raman amplifier design. This model aims at finding the pump powers and wavelengths required for a target signal power evolution, both in distance along the fiber and in frequency. Using the proposed framework, the prediction of the pump configuration required to achieve a target power profile is demonstrated numerically with high accuracy in C-band considering both counter-propagating and bidirectional pumping schemes. For a distributed Raman amplifier based on a 100 km single-mode fiber, a low mean set (0.51, 0.54 and 0.64 dB) and standard deviation set (0.62, 0.43 and 0.38 dB) of the maximum test error are obtained numerically employing 2 and 3 counter, and 4 bidirectional propagating pumps, respectively.

Summary

We haven't generated a summary for this paper yet.