Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reduced basis stabilization for the unsteady Stokes and Navier-Stokes equations (2103.03553v2)

Published 5 Mar 2021 in math.NA and cs.NA

Abstract: In the Reduced Basis approximation of Stokes and Navier-Stokes problems, the Galerkin projection on the reduced spaces does not necessarily preserved the inf-sup stability even if the snapshots were generated through a stable full order method. Therefore, in this work we aim at building a stabilized Reduced Basis (RB) method for the approximation of unsteady Stokes and Navier-Stokes problems in parametric reduced order settings. This work extends the results presented for parametrized steady Stokes and Navier-Stokes problems in a work of ours \cite{Ali2018}. We apply classical residual-based stabilization techniques for finite element methods in full order, and then the RB method is introduced as Galerkin projection onto RB space. We compare this approach with supremizer enrichment options through several numerical experiments. We are interested to (numerically) guarantee the parametrized reduced inf-sup condition and to reduce the online computational costs.

Citations (5)

Summary

We haven't generated a summary for this paper yet.