Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ribbon filter: practically smaller than Bloom and Xor (2103.02515v2)

Published 3 Mar 2021 in cs.DS and cs.DB

Abstract: Filter data structures over-approximate a set of hashable keys, i.e. set membership queries may incorrectly come out positive. A filter with false positive rate $f \in (0,1]$ is known to require $\ge \log_2(1/f)$ bits per key. At least for larger $f \ge 2{-4}$, existing practical filters require a space overhead of at least 20% with respect to this information-theoretic bound. We introduce the Ribbon filter: a new filter for static sets with a broad range of configurable space overheads and false positive rates with competitive speed over that range, especially for larger $f \ge 2{-7}$. In many cases, Ribbon is faster than existing filters for the same space overhead, or can achieve space overhead below 10% with some additional CPU time. An experimental Ribbon design with load balancing can even achieve space overheads below 1%. A Ribbon filter resembles an Xor filter modified to maximize locality and is constructed by solving a band-like linear system over Boolean variables. In previous work, Dietzfelbinger and Walzer describe this linear system and an efficient Gaussian solver. We present and analyze a faster, more adaptable solving process we call "Rapid Incremental Boolean Banding ON the fly," which resembles hash table construction. We also present and analyze an attractive Ribbon variant based on making the linear system homogeneous, and describe several more practical enhancements.

Citations (38)

Summary

We haven't generated a summary for this paper yet.