Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the effectiveness of adversarial training against common corruptions (2103.02325v2)

Published 3 Mar 2021 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: The literature on robustness towards common corruptions shows no consensus on whether adversarial training can improve the performance in this setting. First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration. Then we explain why adversarial training performs better than data augmentation with simple Gaussian noise which has been observed to be a meaningful baseline on common corruptions. Related to this, we identify the $\sigma$-overfitting phenomenon when Gaussian augmentation overfits to a particular standard deviation used for training which has a significant detrimental effect on common corruption accuracy. We discuss how to alleviate this problem and then how to further enhance $\ell_p$ adversarial training by introducing an efficient relaxation of adversarial training with learned perceptual image patch similarity as the distance metric. Through experiments on CIFAR-10 and ImageNet-100, we show that our approach does not only improve the $\ell_p$ adversarial training baseline but also has cumulative gains with data augmentation methods such as AugMix, DeepAugment, ANT, and SIN, leading to state-of-the-art performance on common corruptions. The code of our experiments is publicly available at https://github.com/tml-epfl/adv-training-corruptions.

Citations (96)

Summary

We haven't generated a summary for this paper yet.