Papers
Topics
Authors
Recent
2000 character limit reached

Leading or Following? Dyadic Robot Imitative Interaction Using the Active Inference Framework

Published 3 Mar 2021 in cs.RO, cs.AI, and cs.NE | (2103.02137v2)

Abstract: This study investigated how social interaction among robotic agents changes dynamically depending on the individual belief of action intention. In a set of simulation studies, we examine dyadic imitative interactions of robots using a variational recurrent neural network model. The model is based on the free energy principle such that a pair of interacting robots find themselves in a loop, attempting to predict and infer each other's actions using active inference. We examined how regulating the complexity term to minimize free energy determines the dynamic characteristics of networks and interactions. When one robot trained with tighter regulation and another trained with looser regulation interact, the latter tends to lead the interaction by exerting stronger action intention, while the former tends to follow by adapting to its observations. The study confirms that the dyadic imitative interaction becomes successful by achieving a high synchronization rate when a leader and a follower are determined by developing action intentions with strong belief and weak belief, respectively.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.