Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MicroHECL: High-Efficient Root Cause Localization in Large-Scale Microservice Systems (2103.01782v1)

Published 1 Mar 2021 in cs.SE

Abstract: Availability issues of industrial microservice systems (e.g., drop of successfully placed orders and processed transactions) directly affect the running of the business. These issues are usually caused by various types of service anomalies which propagate along service dependencies. Accurate and high-efficient root cause localization is thus a critical challenge for large-scale industrial microservice systems. Existing approaches use service dependency graph based analysis techniques to automatically locate root causes. However, these approaches are limited due to their inaccurate detection of service anomalies and inefficient traversing of service dependency graph. In this paper, we propose a high-efficient root cause localization approach for availability issues of microservice systems, called MicroHECL. Based on a dynamically constructed service call graph, MicroHECL analyzes possible anomaly propagation chains, and ranks candidate root causes based on correlation analysis. We combine machine learning and statistical methods and design customized models for the detection of different types of service anomalies (i.e., performance, reliability, traffic). To improve the efficiency, we adopt a pruning strategy to eliminate irrelevant service calls in anomaly propagation chain analysis. Experimental studies show that MicroHECL significantly outperforms two state-of-the-art baseline approaches in terms of both accuracy and efficiency. MicroHECL has been used in Alibaba and achieves a top-3 hit ratio of 68% with root cause localization time reduced from 30 minutes to 5 minutes.

Citations (100)

Summary

We haven't generated a summary for this paper yet.