Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric estimation of the preferential attachment function from one network snapshot (2103.01750v4)

Published 1 Mar 2021 in cs.SI, physics.data-an, physics.soc-ph, and stat.ME

Abstract: Preferential attachment is commonly invoked to explain the emergence of those heavy-tailed degree distributions characteristic of growing network representations of diverse real-world phenomena. Experimentally confirming this hypothesis in real-world growing networks is an important frontier in network science research. Conventional preferential attachment estimation methods require that a growing network be observed across at least two snapshots in time. Numerous publicly available growing network datasets are, however, only available as single snapshots, leaving the applied network scientist with no means of measuring preferential attachment in these cases. We propose a nonparametric method, called PAFit-oneshot, for estimating preferential attachment in a growing network from one snapshot. PAFit-oneshot corrects for a previously unnoticed bias that arises when estimating preferential attachment values only for degrees observed in the single snapshot. Our work provides a means of measuring preferential attachment in a large number of publicly available one-snapshot networks. As a demonstration, we estimated preferential attachment in three such networks, and found sublinear preferential attachment in all cases. PAFit-oneshot is implemented in the R package PAFit.

Summary

We haven't generated a summary for this paper yet.