Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothness Analysis of Adversarial Training (2103.01400v4)

Published 2 Mar 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Deep neural networks are vulnerable to adversarial attacks. Recent studies about adversarial robustness focus on the loss landscape in the parameter space since it is related to optimization and generalization performance. These studies conclude that the difficulty of adversarial training is caused by the non-smoothness of the loss function: i.e., its gradient is not Lipschitz continuous. However, this analysis ignores the dependence of adversarial attacks on model parameters. Since adversarial attacks are optimized for models, they should depend on the parameters. Considering this dependence, we analyze the smoothness of the loss function of adversarial training using the optimal attacks for the model parameter in more detail. We reveal that the constraint of adversarial attacks is one cause of the non-smoothness and that the smoothness depends on the types of the constraints. Specifically, the $L_\infty$ constraint can cause non-smoothness more than the $L_2$ constraint. Moreover, our analysis implies that if we flatten the loss function with respect to input data, the Lipschitz constant of the gradient of adversarial loss tends to increase. To address the non-smoothness, we show that EntropySGD smoothens the non-smooth loss and improves the performance of adversarial training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sekitoshi Kanai (18 papers)
  2. Masanori Yamada (15 papers)
  3. Hiroshi Takahashi (12 papers)
  4. Yuki Yamanaka (7 papers)
  5. Yasutoshi Ida (13 papers)
Citations (5)